core

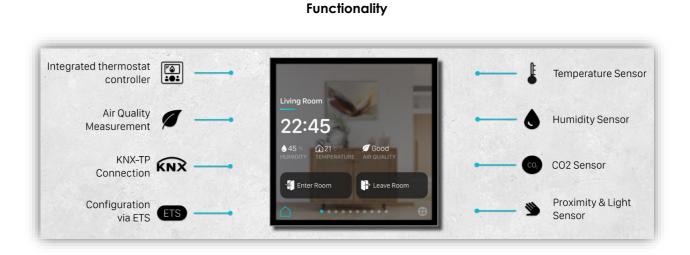
User Manual Eclipse Room Controller

Document Version: 2.0

Last Revision: 18.09.2024

Product Code: CR-ECP-04-KNX

core


Table Of Contents

1. Presentation	3
1.1. Main Features	4
1.2. Dimensions	5
2. Technical Specification	6
2.1. Installation	7
2.1.1 Installation Site	7
2.1.2. Mounting, Electrical Connection	7
3. ETS Parameters	9
3.1. General	9
3.1.1. Proximity Sensor	10
3.1.2. Brightness Sensor	10
3.1.3. Humidity Sensor	11
3.1.4. Co2 Sensor	12
3.1.5. Time	13
3.1.6. Scenes	13
3.1.7. Temperature Sensor	15
3.1.8. Display	16
3.2. Function Page	17
3.2.1. Page 1 – Main Page	20
3.2.2. Page 1 – Navigation Page	22
3.2.3. Page 1 – List View	23
3.2.4. Page 1 – Detailed Control Element	24
3.2.5. Page 1 – Status Display	48
4. Commissioning	49

Presentation

Eclipse Room Controller is designed to be the most exclusive touch panel for rooms. Simply, one digital control panel equipped with multiple sensors to control all. The high-quality display and premium materials combined with a sleek and stylish design language that matches other Core products. At only 11mm in thickness, the Eclipse Room Controller is both discreet and elegant, blending seamlessly into any room decor.

Material and Colour Options

Brushed Finish

Pure form of stainless steel, brass and aluminium are brushed with perfect craftsmanship to provide satin effect in each touch to the device.

Silky-Matte Finish

Aluminium is painted with unique colours and coated with special techniques to provide silky feeling in each touch to the product.

Titanium Grey

Cocoa Grey

Obsidien Black

Ordering Tips:

Use online planner to create an Eclipse Room Controller.

https://planner.core.com.tr/

1.1. Main Features

INTUITIVE USER INTERFACE

The intuitive user interface of the Eclipse Room Controller is designed to provide a seamless control experience, making it easy to manage all your smart home devices with just a few taps. The large, easy-to-read icons and buttons, coupled with the device's intuitive navigation system, make it simple for anyone to use.

HIGH QUALITY DISPLAY

The crystal-clear HD display of the Eclipse Room Controller ensures that all information and graphics are displayed with incredible clarity and sharpness. This means that users can easily view all information and control their devices with ease, even from a distance. (4", 720 x 720 pixels)

EXTENSIVE APPLICATION

Eclipse Room Controller activates many functions. Switching, Dimming, RGB Control, Tunable White, Thermostat Functionality, AC Control, Blinds, Jalousie, Scene, Energy Display, Audio, Air Quality.

BUILT-IN THERMOSTAT

Eclipse Room Controller can control HVAC systems via built-in thermostat logic, temperature sensor and humidity sensor.

AIR QUALITY MEASUREMENT

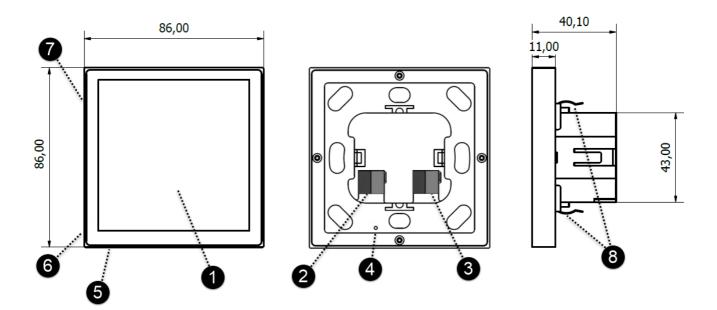
Eclipse Room Controller measures CO2 inside the room with its built-in sensor. Air-quality of the room can be checked on main page or air-quality page in detail. Logic functions can be triggered according to the air-quality level via KNX.

ADAPTIVE BACKLIGHTS

Light sensor measures the ambient light in the room, allowing for automatic adjustment of the backlight brightness. With this advanced feature, the device can be customized to provide the perfect level of brightness for any environment.

PROXIMITY SENSOR

The Eclipse Room Controller is equipped with a sophisticated proximity sensor that detects when a user is approaching the device. In dark environments, the light of the display is automatically dimmed to provide a welcoming and comfortable user experience.

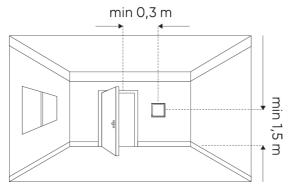

PAGE – ELEMENTS

Eclipse Room Controller has 12 pages with a maximum of 64 control elements. This extensive range of control options provides users with unparalleled control over their smart home devices.

1.2. Dimensions

Dimensional drawing (all dimensions are in mm)

- 1. HD Display
- 2. Power Connector (12V-30V)
- 3. KNX Connector
- 4. KNX Programming Button
- 5. Position of Temperature and Humidity Sensor
- 6. Position of CO2 Sensor
- 7. SD Card Slot
- 8. Mouting Clips

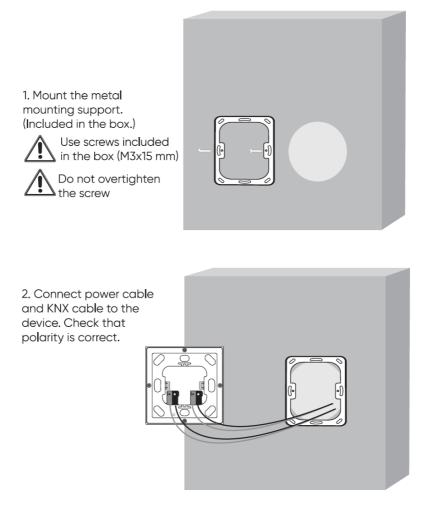

core

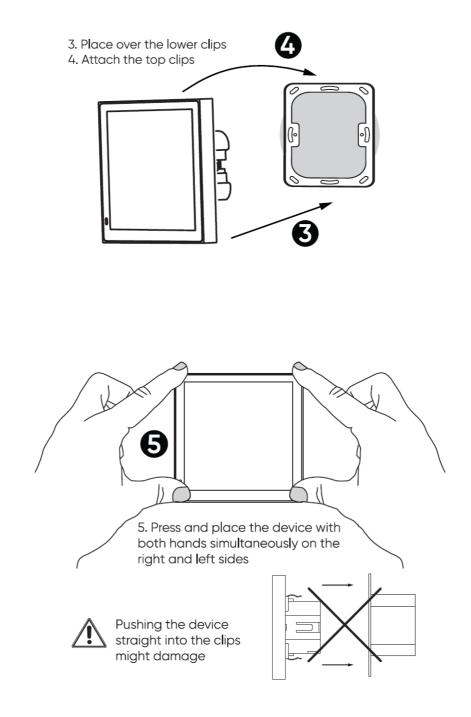
2. Technical Specification

Processor:	Arm Cortex-A7 900MHz 512 MB DDR3 RAM Embedded Linux Operating System
Display:	IPS TFT 4" – 720px X 720px 400 cd/m2 HD Display
Sensors:	Temperature – Accuracy Rate: +/- 0,2°C Humidity – Accuracy Rate: +/- 2% CO2 Proximity & Light
Dimensions:	86mm X 86mm X 11mm
Casing Material:	Aluminium, Brass and Stainless Steel depending on the finish selection
Power:	12-30 VDC - via KNX Auxiliary Power Supply or separate PS
Consumption:	< 70 mA from KNX Auxiliary Power Supply < 5 mA from KNX Bus-line
Connectivity:	KNX-TP
Programming Tool:	ETS
KNX Figures:	Max. Page: 12 Max. Control Element: 64
Installation:	German IEC/EN 60670 In wall Box

2.1. Installation

2.1.1 Installation Site




 \succ The device should be positioned approximately 150 cm above the ground and 30 cm away from the door.

> The device should not be installed close to the heat source. The wall opposite the heat source will be appropriate for the installation.

 \succ Contact with fluids to the device is to be avoided.

2.1.2. Mounting, Electrical Connection

For installation video: https://www.youtube.com/watch?v=w7Oj0 RHpVY

Ĭ

3. ETS Parameters

Eclipse Room Controller must be configured and set up using the standard KNX configuration tool ETS. The ETS database for this device can be downloaded from ETS online catalogue.

For tutorial videos: <u>https://www.youtube.com/playlist?list=PLtwbriT0bxi_0rqh9KTyEgKsq8VYcDyxP</u>

3.1. General

5.4 Eclipse Room Controlle	er > General > Settings	
General	Display Temperature Unit	Celcius Fahrenhei
Settings	Send Alive Beacon	O Disable Enable
Temperature Sensor	Proximity Sensor	Disable Enable
Display	Brightness Sensor	Disable Enable
Function Page	Humidity Sensor	Disable Enable
-	CO2 Sensor	Disable Enable
Settings	Time is provided from KNX	O No Ves
Page 1-Main Page	Scenes	O Disable Enable

Display Temperature Unit: [Celsius, Fahrenheit]

Temperature unit can be selected for the device. Once selected, the device will use your preferred temperature unit for all temperature values displayed on the Room Controller.

Send Alive Beacon: [5...10...65535 s]

Send Alive Beacon	🔵 Disable 🔘 Enable	
Send Alive Beacon Value	0 0 1	
Send Alive Beacon Interval (s)	10 🗍	
Delay After Bus Recovery (s)	10 🗘	

Parameter used to observe that the device and the application are running. It is disabled by default. When activated, Object Number 1 "Send Alive Beacon" will send selected value with defined time interval.

Delay After Bus Voltage Recovery: [5...10...65535 s]

The parameter defines the behaviour of the switch after bus power return. The delay time determines the period between bus voltage recovery and the point after which telegrams can be sent.

3.1.1. Proximity Sensor

Through the proximity sensor it is possible to reactivate the display automatically only when the user approaches the switch.

1.5.4 Eclipse Room Controller > General > Settings		
– General	Display Temperature Unit	O Celcius O Fahrenheit
Settings	Send Alive Beacon	Disable Enable
Temperature Sensor	Proximity Sensor	Oisable O Enable
Display	Brightness Sensor	O Disable C Enable
+ Function Page	Humidity Sensor	Disable Enable

3.1.2. Brightness Sensor

Brightness Sensor [Disable, Enable]

Brightness sensor can be enabled to activate auto adjustment of display brightness according to ambient lux level which is measured by built-in light sensor.

5.4 Eclipse Room Controller > General > Settings		
- General	Display Temperature Unit	O Celcius O Fahrenheit
Settings	Send Alive Beacon	O Disable C Enable
Temperature Sensor	Proximity Sensor	O Disable Enable
Display	Brightness Sensor	Disable O Enable
 Function Page 	Darkness Recognition	🔵 Disable 🔘 Enable
Settings	Dark will be recognised below 10 lux	
Page 1-Main Page	Darkness Switching Value	O Inverted O Not Inverted

Darkness Recognition: [Disable, Enable]

Object "Darkness Switching Value – (0-Active)" can be activated by enabling "Darkness Recognition" parameter. If measured lux value is less than 10 lux, darkness will be recognised and transmitted via this object to KNX bus. Object value can be used inverse. [True, False]

1	2	Darkness Switching Value	0-Active	1 bit	switch	С Т -

3.1.3. Humidity Sensor

General	Sensor Compensation (%)	0	÷
Settings	Send Humidity	Cyclic O Cyclic and on change	
Temperature Sensor	Sending Interval (min)	10	(0=inactiv
Humidity Sensor	Transmission On Change (%)	5	4
Display	Humidity Value From	Internal Sensor	•
Function Page Settings Page 1-Main Page		Internal Sensor 80% Internal, 20% External 60% Internal, 40% External 50% Internal, 50% External 40% Internal, 60% External 20% Internal, 80% External	~

Humidity sensor tab contains following parameters.

Sensor Compensation (%):

Measured humidity value can be shifted up or down by using sensor compensation value. [-5...**0**...+5]

Example: Assume that "3" is written to the sensor compensation box. Measured humidity percentage will be increased + 3%. If "-3" is written to the sensor compensation box. Measured humidity percentage will be decreased - 3%.

Send Humidity:

Object Number 3 "Humidity Value – Internal Value (%)" can be sent cyclically or by change of measured humidity.

Sending Interval (min) [0...10...255]

Transmission On Change (%) [1...5...255]

Humidity Value From:

Humidity value can be received by an external humidity sensor directly or partially according to selected percentage.

3.1.4. Co2 Sensor

CO2 sensor tab contains following parameters.

1.5.4 Eclipse Room Controller > 0	General > CO2 Sensor	
- General	Sensor Compensation (ppm)	0
Settings	Send CO2	Cyclic O Cyclic and on change
Temperature Sensor	Sending Interval (min)	10 (0=inactive)
CO2 Sensor	Transmission On Change (ppm)	100 ‡
Display	CO2 Value From	Internal Sensor 🔹
- Function Page	Air Quality Levels	
Settings	Air Quality is excellent below threshol above threshold2	d1; average between threshold1 & threshold2; poor
Page 1-Main Page	Air Quality Thresholds	Default (Threshold1=500ppm, Threshold2=100 User Defined
	Poor Level Switching	O Disable Enable

Sensor Compensation (ppm):

Measured CO₂ value can be shifted up or down by using sensor compensation value. [-500...0...+500]

<u>Example</u>: Assume that "100" is written to the sensor compensation box. Measured CO_2 ppm will be increased "100 ppm". If "-100" is written, measured CO_2 ppm will be decreased "100 ppm".

Send CO₂:

Object Number 5 "CO₂ Value - Internal Value (ppm)" can be sent cyclically or by change of measured ppm.

Sending interval time [0...10...255]

Transmission on change [10...100...500]

CO2 value from:

CO₂ value can be received from an external CO₂ sensor directly or partially according to selected percentage.

Air Quality Thresholds:

Air quality is excellent below threshold 1, average between threshold 1 and threshold 2; poor above threshold 2. Threshold values can be defined by user.

Excellent ← Threshold 1 → Average ← Threshold 2 → Poor

Air Quality Levels		
Air Quality is excellent below threshold1; average between threshold1 & threshold2; poor above threshold2		
Air Quality Thresholds O Default (Threshold1=500ppm, Threshold2=100 O User Defined		
CO2 Threshold1 (ppm)	500	* *
CO2 Threshold2 (ppm)	500	+Threshold1
Poor Level Switching	🔵 Disable 🔘 Enable	
Poor Level Switching Value	🔵 Inverted 🔘 Not Inverte	ed

Poor Level Switching:

Object Number 7 "Poor Level Switching Value" can be activated. Object will send "Air Quality is Poor -Alarm" when air quality level is higher than "Threshold 2". Object value can be inverted. [True, False]

3.1.5. Time

Time is provided from KNX:

If "yes" is selected, Object Number 10 "General - Time" will be activated to receive time information from KNX bus. Received time will be shown on the Main page of the device.

Otherwise, Room Controller uses built-in RTC (real time clock) for the clock on main page. Use KNX Group Monitor to adjust the time via writing "correct time" value to Object Number 10 "General - Time".

	10	General	Time	3 bytes	time of day	C - W
--	----	---------	------	---------	-------------	-------

3.1.6. Scenes

Room Controller has 8 scene outputs (KNX objects) to send commands to KNX bus. Scene outputs are defined in 8 different scenes and can be used to send different values by recalling each scene separately.

Data type of each Scene Output can be selected as "1 Bit, 1 Byte Unsigned and 1 Byte Percentage".

www.core.com.tr

General	Scene Output 1 Data Type	1 Bit	•
Function Page	Scene Output 2 Data Type	1 Bit 1 Byte Unsigned	v
Scenes	Scene Output 3 Data Type	1 Byte Percentage	
	Scene Output 4 Data Type	1 Bit	•
Scene Outputs	Scene Output 5 Data Type	1 Byte Unsigned	-
Scene 1	Scene Output 6 Data Type	1 Bit	-
Scene 2	Scene Output 7 Data Type	1 Byte Percentage	•
Scene 3	Scene Output 8 Data Type	1 Bit	-
Scene 4			
Scene 5			
Scene 6			
Scene 7			
Scene 8			

Scene number can be individually selected between 1 and 64 for each scene. Thus, scenes can be recalled by using "Scene number" via Object Number 613 "Scenes – Scene Recall".

I.5.4 Eclipse Room Contro	ller > Scenes > Scene 1	
+ General	Scene Number	1
+ Function Page	Scene Output 1	O Disable O Enable
- Scenes	Scene Output 2	Disable Enable
	Scene Output 3	Disable Enable
Scene Outputs	Scene Output 4	🔵 Disable 🔘 Enable
Scene 1	Value	0 1
Scene 2	Scene Output 5	Disable Enable
Scene 3 Scene 4	Scene Output 6	Disable Enable
Scene 4	Scene Output 7	🔵 Disable 🔘 Enable
Scene 6	Value (%)	50
Scene 7	Scene Output 8	Oisable Enable
Scene 8		

Any scene which is recalled by Object Number 613 will send value of enabled "Scene output" via Object Numbers 614-621 to KNX bus.

613	Scenes	Scene Recall	1 byte	scene number	С	-	W	-	U
614	Scenes	Scene Output 1 (1 Bit)	1 bit	switch	С	-	-	Т	-
615	Scenes	Scene Output 2 (1 Bit)	1 bit	switch	С	-	-	Т	-
616	Scenes	Scene Output 3 (1 Bit)	1 bit	switch	С	-	-	Т	-
617	Scenes	Scene Output 4 (1 Bit)	1 bit	switch	С	-	-	Т	-
618	Scenes	Scene Output 5 (1 Byte Unsigned)	1 byte	counter pulses (0255)	С	-	-	Т	-
619	Scenes	Scene Output 6 (1 Bit)	1 bit	switch	С	-	-	Т	-
620	Scenes	Scene Output 7 (1 Byte Percentage)	1 byte	percentage (0100%)	С	-	-	Т	-
621	Scenes	Scene Output 8 (1 Bit)	1 bit	switch	С	-	-	Т	-

3.1.7. Temperature Sensor

Temperature unit can be selected as Celsius or Fahrenheit.

Sensor Compensation (x0.1K):

Measured temperature value can be shifted up or down by using sensor calibration value. [-100...+100]

<u>Example</u>: Assume that "10" is written to the sensor compensation box. Calculation: $10x \ 0.1 = 1$ Celsius, measured temperature will be increased "+ 1 °C". If "-10" is written measured temperature will be decreased "-1 °C".

Send Temperature:

Object Number 8 "Actual Temperature – Internal Value" can be sent cyclically or by change of measured temperature.

Sending Interval (min) [0...10...255]

Transmission On Change (x0.1K) [1...3...100]

Temperature Value from:

Temperature value can be received from an external temperature sensor directly or partially according to selected percentage. Object Number 9 "External Temperature – External Value".

General	Sensor Compensation (x0.1K)	0	÷
Settings	Send Temperature	Cyclic O Cyclic and on change	
Temperature Sensor	Sending Interval (min)	10	🔹 (0=inactive
Display	Transmission On Change (x0.1K)	3	÷
Eventing Press	Temperature Value From	Internal Sensor	•
Function Page		Internal Sensor	~
		80% Internal, 20% External	
		60% Internal, 40% External	
		50% Internal, 50% External	
		40% Internal, 60% External	
		20% Internal, 80% External	
		External Sensor	

3.1.8. Display

Display parameter tab contains following parameters.

General	Screen saver time (s)	30	
Settings	Password for settings	🔵 Disable 🔘 Enable	
Temperature Sensor	Password (4 Digits)	1234	
Display	Unlocked Trigger Output	🔵 Disable 🔘 Enable	
Function Page	Data Type	1 Bit	
- aneiton - age	Value	0 0 1	
	Password for screen saver	🔵 Disable 🔘 Enable	
	Password (4 Digits)	1234	
	Unlocked Trigger Output	🔵 Disable 🔘 Enable	
	Data Type	1 Bit	
	Value	0 0 1	

Screen saver time (s): [1...30...120]

Display goes into stand-by position when screen saver time is over.

Password for settings: (4 digits)

A "4 digit" password can be created to protect device settings. Settings can be changed only if correct password is entered.

Unlocked Trigger Output:

If settings page is unlocked by entering password then Object Number 11"Settings Password - Trigger" will send selected data to KNX bus.

Unlocked Trigger Output	🔵 Disable 🔘 Enable	
Data Type	1 Bit	•
Value	1 Bit 1 Byte Scene Control	~
Password for screen saver	1 Byte Value	
	1 Byte Percentage	

Password for screen saver: (4 digits)

A "4 digit" password can be created to protect the Room Controller. Screen can be activated only if correct password is entered.

Unlocked Trigger Output:

If screen saver is unlocked by entering password on the device then Object Number 12 "Screen Saver Password - Trigger" will send selected data to KNX bus.

Password for screen saver	🔵 Disable 🔘 Enable	
Password (4 Digits)	1234	
Unlocked Trigger Output	🔵 Disable 🔘 Enable	
Data Type	1 Bit	•
Value	1 Bit	×
	1 Byte Scene Control	
	1 Byte Value	
	1 Byte Percentage	

3.2. Function Page

Function pages can be enabled under "Function Page - Settings" parameter tab. Room Controller has a maximum of 12 identical function pages.

1.5.4 Eclipse Room Controller	> Function Page > Settings	
+ General	Function Page 1	🔵 Disable 🔘 Enable
 Function Page 	Function Page 2	🔵 Disable 🔘 Enable
Settings	Function Page 3	🔵 Disable 🔘 Enable
Page 1-Main Page	Function Page 4	🔵 Disable 🔘 Enable
Page 2-Main Page	Function Page 5	🔵 Disable 🔘 Enable
Page 3-Main Page	Function Page 6	🔵 Disable 🔘 Enable
Page 4-Main Page	Function Page 7	🔵 Disable 🔘 Enable
Page 5-Main Page	Function Page 8	🔵 Disable 🔘 Enable
Page 6-Main Page	Function Page 9	🔵 Disable 🔘 Enable
Page 7-Main Page	Function Page 10	🔵 Disable 🔘 Enable
Page 8-Main Page	Function Page 11	🔵 Disable 🔘 Enable
Page 9-Main Page	Function Page 12	🔵 Disable 🔘 Enable
Page 10-Main Page		
Page 11-Main Page		
Page 12-Main Page		

Each of function pages has following parameters.

Description of the page	Living Room	
Page Icon	🌻 - Light 1	
Page Function	Main Page	
	Main Page Navigation Page	
	List View	
	Status Display	
	-	Page Function Main Page Navigation Page List View Detailed Control Element

Description of the page: (16 characters allowed)

Description will be visible on left-top corner of the screen. Example: "Living Room".

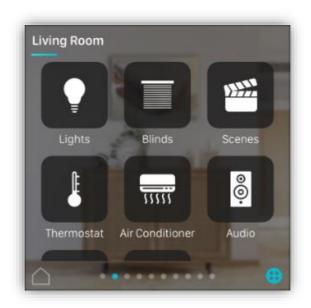
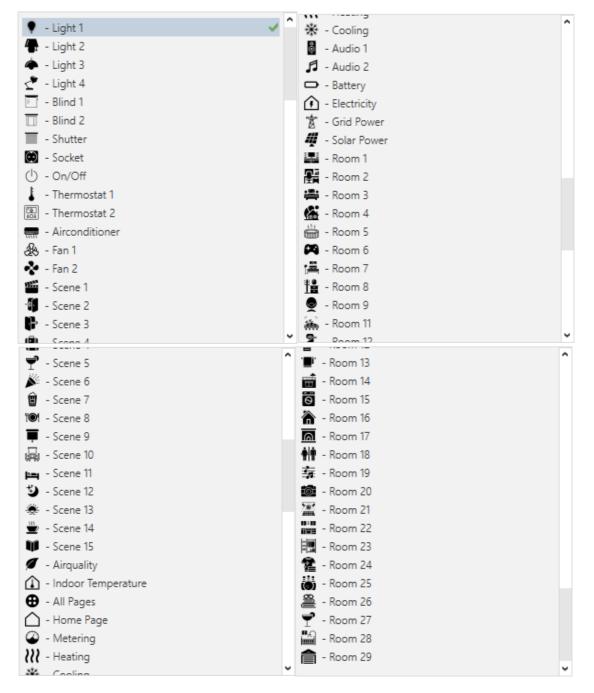


Figure 1 – Description of the page

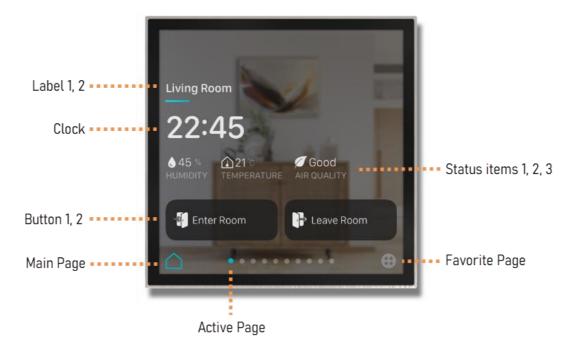

Page Icon:

A specific icon can be selected for the page from ready to use icon list. Selected icon will be visible on "Navigation Page" if page is added to navigation page. Figure 1 (Lights, Blinds etc.)

Page Icon	🎈 - Light 1	•
Page Function	🕈 - Light 1	* *
Label 1	 Light 2 Light 3 	
Label 2	奎 - Light 4	
	 Blind 1 Blind 2 	

All available icons are listed below.

Page Function:


Following options are available for page function.

Page Function	Main Page 🔹	r
Label 1	Main Page 🗸	1
Label 2	Navigation Page List View Detailed Control Element	
Status Item Configuration	Status Display Settings	
Chatrice Itaan 1	-	

3.2.1. Page 1 – Main Page

Main Page contains "two of customized labels", "clock", "three of status items" and "two functional buttons". Figure 2

1.5.4 Eclipse Room Controller	> Function Page > Page 1-Main Pag	e	
+ General	Description of the page	Page 1	
- Function Page	Page Icon	📍 - Light 1	•
Cattin an	Page Function	Main Page	•
Settings	Label 1		
Page 1-Main Page	Label 2		
	Status Item Configuration		
	Status Item 1	None	•
	Status Item 2	None	•
	Status Item 3	None	•
	Button Configuration		
	Button 1 Function	None	•
	Button 2 Function	None	•

Parameter	Possible Values	Description
Label 1	User defined (16 characters max.)	Displayed on top-left of main page view.
Label 2	User defined (16 characters max.)	Displayed on top-left of main page view.
Status Item Configuration:		
Status item 1 Status item 2 Status item 3	Following options are selectable for each item.Status items are displayed on main page view with customized text and received or measured value of selected unit.Temperature Humidity Air Quality CO2 	
Status item 1, 2, 3 (Text)	User defined (16 characters max.)	Text is visible under measured value of selected unit. Check above Main page view on Figure 2.
Status item 1, 2, 3 (Sensor)	Internal, External	Value can be received from an external sensor using related object. Example: "Page 1- Main Page Status item 1 – Temperature".
Button Configuration:		
Button 1 Function Button 2 Function	Following datatypes are selectable for each button.	Two buttons can be used as "Scene button" on Main page view.
	1 bit 1 Byte Scene Control 1 Byte Value 1 Byte Percentage	Check above Main page view on Figure 2. (Enter Room, Leave Room)
1 bit 1 Byte Scene 1 Byte Value 1 Byte Percentage	[0, 1] [164] scene number [0255] value [%0%100] percentage	Selected data will be sent with button press.
Button 1 Function (Icon)	icon options (81)	Selected icon will be visible on the button.
Button 1 Function (Text)	User defined (16 characters max.)	Text will be visible on the button.

3.2.2. Page 1 – Navigation Page

Basically, "Navigation Page" contains shortcuts of other pages. 12 pages can be added to a navigation page at the same time. Each of pages is added with its own icon to "Navigation Page". Figure 3

5.4 Eclipse Room Controller > Function Page > Page 1-Main Page						
General	Description of the page	Page 1				
Settings	Page Function	Navigation Page	-			
Temperature Sensor	Link 1 - navigation function	🔵 Disable 🔘 Enable				
Display	Link to	Page 1	•			
	Link 2 - navigation function	🔵 Disable 🔘 Enable				
Function Page	Link to	Page 2				
Settings	Link 3 - navigation function	Disable Enable				
Page 1-Navigation						

Figure 3 - Navigation Page

3.2.3. Page 1 – List View

Different type of control elements can be added to same page thanks to "List View". Following control elements can be used. Figure 4, 5, 6

"Switch, Dimming, Shutter/Blind, Scene, Value, Tunable White Control".

Figure 5 - List view (Lights)

Figure 4 - List view (Blinds)

Figure 6 - List view (Scenes)

General	Description of the page	Page 1	
Settings	Page Icon	🕈 - Light 1	
Temperature Sensor	Page Function	List View	
Display	Number of control element	8	
bispidy	Control Element 1		
Function Page	Item 1 Function	Switch	
Settings	lcon	Switch	
Page 1-List View	Text	Dimming Shutter/Blind	
	Control Element 2	Scene	
	Item 2 Function	Value Tunable White Control	
	lcon	🔻 - Light 1	

Parameter	Possible Values	Description
Control Element 1 (up to 8)		
Item 1 Function	Switch Dimming Shutter/Blind Scene Value Tunable White Control	Following functions are selectable for each control element.
Icon	icon options (81)	Selected icon will be visible on the control element. Figure 4, 5, 6
Text		
Item 1 Function (Shutter Blind) Blind position	Disable, Enable	Enables status object for blind position.
Item 1 Function (Shutter Blind) Slat position	Disable, Enable	Enables status object for Slat position.
Item 1 Function (Scene) Scene Number	164	Selected scene number is used to recall.
Item 1 Function (Scene) Mode	 Send scene Send scene and save at long press 	If option 2 is selected, current position of lighting, blinds etc. can be saved on the actuator.
Item 1 Function (Tunable White Control) Color Temperature Min.	100010000	Defines the minimum color temperature that can be selected on control element.
Item 1 Function (Tunable White Control) Color Temperature Min.	100010000	Defines the maximum color temperature that can be selected on control element.

3.2.4. Page 1 – Detailed Control Element

"Detailed Control Element" can be used to focus only one control type in detail with all available functions. Figure 7, 8, 9, 10

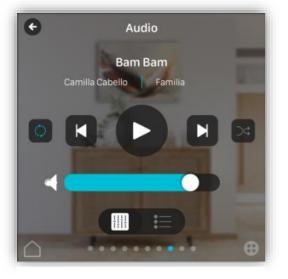


Figure 7 - Audio Control

Figure 8 - RGB Color wheel

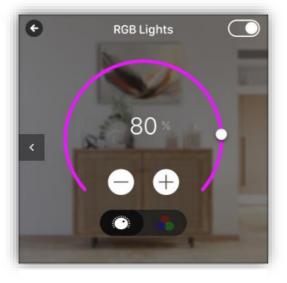


Figure 7 - RGB Brightness Level

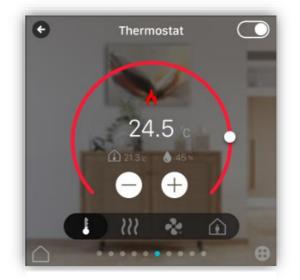


Figure 10 - Thermostat

Parameter	Possible Values	Description
Detailed Control Element		
Page Function	Switch Dimming Shutter/Blind Scene Value Tunable White Control RGBW Control General Thermostat(RTC) Slave Thermostat Air Conditioner Control Audio Control	Following functions are selectable for each detailed control element.
Shutter Blind		
Blind position	Disable, Enable	Enables status object for blind position.
Slat position	Disable, Enable	Enables status object for Slat position.
Scene		
Scene Number	164	Sets scene number will be recalled via scene object.
Mode	 Send scene Send scene and save at long press 	If option 2 is selected, current position of lighting, blinds etc. can be saved on the actuator.
Tunable White Control		
Color Temperature Min.	1000 2000 10000	Defines the minimum colour temperature that can be selected on control element.
Color Temperature Min.	1000 6000 10000	Defines the maximum colour temperature that can be selected on control element.
RGBW Control		
Control Type	RGB, RGBW	Sets the control type according to lighting source.
Data Type	1x3 Byte 3x1 Byte	Sets the data type to control RGB lighting.
General Thermostat (RTC)		Activates parameter tabs for RTC under Page 1.
Settings		
Control Mode	Heating Cooling Heating and Cooling	Control mode of thermostat can be selected for Heating, Cooling, and Heating and Cooling together.
Heating and Cooling Control Value Output	Via 1 object Via 2 objects	Output value for Heating and Cooling can be sent via same object or 2 separate objects. In this way, heating and cooling control value commands can be sent separately.

KNX – ECLIPSE ROOM CONTROLLER

Behavior of Control Mode at Bus Recovery	As before voltage failure Heating Cooling	The parameter defines the behavior of the control mode after bus power return.
Switchover of Control Mode	Only via Object Local and via object Automatic	Parameter makes possible to switch between the heating and cooling mode of the device.

3.2.4.1 General Thermostat (RTC)

3.2.4.1.1. Settings

Control Modes: Heating, Cooling, Heating and Cooling]

1.5	1.5.4 Eclipse Room Controller > Function Page > Page 1-RTC > Settings							
+	General	Control Modes	Heating •					
-	Function Page	Temperature Sensor	Internal External					
	Settings	Window Contact	🔵 Disable 🔘 Enable					
_	Page 1-RTC	Window Contact Value	Inverted O Not Inverted					
	Settings	Thermostat On/Off Function	🔵 Disable 🔘 Enable					
	Setpoints							
	Heating							
	Fan							

Temperature Sensor:

Temperature value can be received from an external temperature sensor directly or internal sensor can be used as default.

Window Contact:

Window Contact (1-Open) object can be used to take thermostat control in stand-by position according to window status. If window is open thermostat will stop working.

Thermostat ON/OFF Function:

Thermostat ON/OFF Function is used to turn the thermostat ON and OFF. Switch object and status object will be created after enabling this parameter.

3.2.4.1.2. Setpoints

1.5	1.5.4 Eclipse Room Controller > Function Page > Page 1-RTC > Setpoints							
+	General	Min. Setpoint Value	16	÷				
_	Function Page	Max. Setpoint Value	32	÷				
	Settings	Setpoint Step Value	0.5 K	•				
_	Page 1-RTC	Send Setpoint	Cyclic O Cyclic and on change					
	Settings	Sending Interval (min)	10 *	(0=inactive)				
	Setpoints	Transmission On Change (x0.1K)	3	÷				
	Heating	Operaitng Modes at Bus Recovery	As before voltage failure	•				
	Fan	Operating Mode 1 Bit Objects	O Disable Enable					
		Heating Mode Setpoints						
		Comfort	22	‡ ℃				
		Standby	20	‡ ℃				
		Night	18	‡ ℃				
		Protection	7	‡ ℃				

Min. Setpoint Value: [5...16...40]

Defines the minimum temperature setpoint value for the thermostat function. Any temperature value lower than Min. Setpoint Value cannot be written or selected on setpoint temperature objects.

Max. Setpoint Value: [5...32...40]

Defines the maximum temperature setpoint value for the thermostat function. Any temperature value higher than Max. Setpoint Value cannot be written or selected on temperature objects.

Setpoint Step Value: [0.1...0.5...1]

Increase/Decrease value of current setpoint by pressing -/+ button on the page of Detailed Control Element.

Send Setpoint (°C): [Cyclic...Cyclic on change]

Current setpoint can be sent cyclically or by change of measured temperature via status Setpoint object.

Sending interval (min): [0...10...255] 0=Inactive

Defines the time period of sending setpoint value via "Status Setpoint" object.

Transmission on change (x0.1 K): [1...3...100]

Defines the minimum temperature change to send setpoint value via "Status Setpoint" object.

Operating Mode at Bus Recovery:

The parameter defines the behavior of the thermostat after bus power return. Operating mode can be changed to following options after a power return:

As before voltage failure Comfort Standby Night Protection

Each operating mode has a different temperature setpoint.

Operating Mode 1 Bit Objects:

Parameter determines the data type of operating mode objects. Data type of operating mode objects can be used as "1 bit" with separate objects for each operating mode if this parameter is enabled. Status Objects will send current status of operating mode after change.

28	Page 1-General Thermostat (RTC)	Comfort Mode	1 bit	state	С	-	W	-	-
29	Page 1-General Thermostat (RTC)	Status Comfort Mode	1 bit	state	C	R	-	Т	-
1 30	Page 1-General Thermostat (RTC)	Standby Mode	1 bit	state	С	-	W	-	-
1 31	Page 1-General Thermostat (RTC)	Status Standby Mode	1 bit	state	С	R	-	Т	-
32	Page 1-General Thermostat (RTC)	Economy/Night Mode	1 bit	state	C	-	W	-	-
33	Page 1-General Thermostat (RTC)	Status Economy/Night Mode	1 bit	state	C	R	-	Т	-
34	Page 1-General Thermostat (RTC)	Building Protection Mode	1 bit	state	C	-	W	-	-
35	Page 1-General Thermostat (RTC)	Status Building Protection Mode	1 bit	state	С	R	-	Т	-

As default,

1 Byte Object [DPT_HVACMode];

Object "Page 1 General Thermostat (RTC) – Operating Mode" can be used to change between different modes. Object "Status Operating Mode" will send current status of operating mode after change.

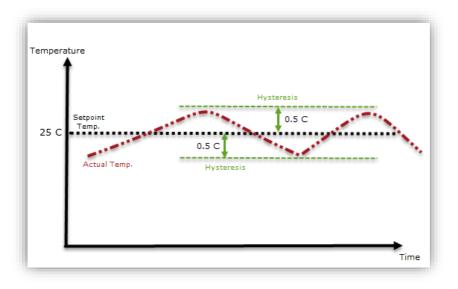
\$01 – Comfort	[20.102 DPT_HVAC]
\$02 – Standby	[20.102 DPT_HVAC]
\$03 – Economy	[20.102 DPT_HVAC]
\$04 – Protection	[20.102 DPT_HVAC]

26	Page 1-General Thermostat (RTC)	Operating Mode	1 byte	HVAC mode	C - W
27	Page 1-General Thermostat (RTC)	Status Operating Mode	1 byte	HVAC mode	C R - T -

Heating Mode Setpoints:

General Thermostat (RTC) has "4" operating modes; "Comfort Mode, Standby Mode, Night Mode and Protection Mode". Each operating mode has their own predefined setpoint temperature.

Changeover of operating modes can be achieved through "Operating Mode" communication objects.



Heating Mode Setpoints		
Comfort	22	‡ °C
Standby	20	‡ ℃
Night	18	‡ °C
Protection	7	‡ ℃
	Comfort Standby Night	Comfort 22 Standby 20 Night 18

3.2.4.1.3. Heating - Control Type: [2-Point Control ON/OFF]

Control Type: [2-Point Control (On/Off), Switching PI Control (PWM), Continuous PI Control]

Operates as a simple switch around the setpoint temperature using hysteresis values. "Hysteresis" prevents the output value from oscillation and give larger margin to turning heat or cool on and off. If system is more an active system, hysteresis values should be given larger and more inactive values.

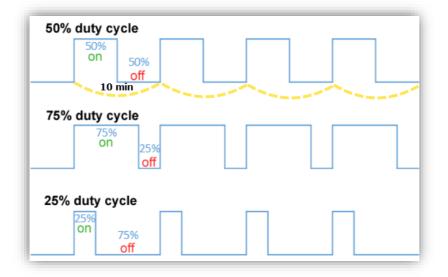
Sending Interval (min): [0...15...255] 0=inactive

Determines cyclic sending period of Object "General Thermostat - Heating 2 Point Control Value".

Hysteresis +/- (x 0.1 °C): [1...5...255]

Determines Hysteresis value to control "Heating 2 Point Control Value" output more accurate. "Hysteresis" prevents the output value from oscillation and give larger margin to turning heat or cool ON and OFF. If system is more an active system, hysteresis values should be given larger and more inactive values.

1.5	1.5.4 Eclipse Room Controller > Function Page > Page 1-RTC > Heating								
+	General	Control Type	2 Point On/Off						
-	Function Page	Sending Interval (min)	15 [*]						
-	Settings Page 1-RTC Settings	Hysteresis ± (x0.1K) Additional Stage	5 *						
	Setpoints Heating								
	Fan								


Additional Stage: Explained in <u>#3.2.4.1.6. Heating - Additional Stage</u>

3.2.4.1.4. Heating - Control Type: [Switching PI Control PWM]

PI algorithm is used to calculate control signal. After calculation, control signal is converted into a pulseinterval signal. This means PWM cycle is divided into "1 bit ON/OFF" output commands based on control value. PWM period and type of heating should be selected according to the used room and type of heating.

PWM Period Time (min): [1...10...255]

Defines PWM period time. If control value is calculated %50. Then control value will be ON for 5 minutes and OFF for second 5 minutes. Please check following graphic.

Heating Type: Multiple heating types with preset parameters are available to the user.

Floor Heating (5K/240) How Water Heating (5K/150) Electrical Heating (4K/100) Fan coil (4K/90) User Defined

If the required heating type is not available, individual parameters can be specified in the "User Defined" configuration.

Proportional Range (x0.1 °C): [10...50...100]

Defines the proportional range of control. Parameter changes the control speed of the controller.

Integration Time (min): [1...240...255]

Defines the reset time of controller. Integration Time has the effect of moving the room temperature slowly toward, and ultimately reaching the setpoint value. Depending on the type of system used, parameter needs to have different values. In general, the more inactive the overall system, the greater time is needed.

General	Control Type	PWM-Switching PI Control	
Function Page	PWM Period Time (min)	10	
	Heating Type	User Defined	
Settings	Proportional Range (x0.1K)	50	
- Page 1-RTC	Integration Time (min)	240	
Settings Setpoints	Additional Stage	Disable Enable	
Heating			

Additional Stage: Explained in #3.2.4.1.6. Heating - Additional Stage

3.2.4.1.5. Heating - Control Type: [Continuous PI Control PWM]

PI algorithm is used to calculate control signal and adjusts its output value between 0% and 100% to match the difference between the actual temperature and the setpoint temperature and enables an accurate regulation of the room temperature to the setpoint value. PI values should be selected compatible with the room and the type of heating system that needs to be controlled. Default PI values are defined for most common heating types. User defined values can be used for different rooms and different heating types for better performance. Using default values as a reference point and adjusting these values according to system might increase controller performance.

Heating Type	User Defined	-
Proportional Range (x0.1K)	50	
Integration Time (min)	240	4 T
Send Value On Change (%)	4	(0=inactiv)
Sending Interval (min)	15	(0=inactiv
Additional Stage	Disable Enable	
	Integration Time (min) Send Value On Change (%)	Integration Time (min) 240 Send Value On Change (%) 4 Sending Interval (min) 15

Heating Type: Multiple heating types with preset parameters are available to the user.

Floor Heating (5K/240) How Water Heating (5K/150) Electrical Heating (4K/100) Fan coil (4K/90) User Defined

If the required heating type is not available, individual parameters can be specified in the "User Defined" configuration.

Proportional Range (x0.1 °C): [10...50...100]

Defines the proportional range of control. Parameter changes the control speed of the controller.

Integration Time (min): [1...240...255]

Defines the reset time of controller. Integration Time has the effect of moving the room temperature slowly toward, and ultimately reaching the setpoint value. Depending on the type of system used, parameter needs to have different values. In general, the more inactive the overall system, the greater time is needed.

Send Value on Change (%): [0...**4**...100] 0=inactive

Heating control value will be sent on change of percentage via Object "General Temperature (RTC)– Heating PI Control Value".

Sending Interval (min): [0...15...255]

Determines cyclic sending period of Object "General Temperature (RTC) - Heating PI Control Value".

Additional Stage: Explained in #3.2.4.1.6. Heating - Additional Stage

3.2.4.1.6. Heating - Additional Stage

Additional Stage: [Disable...Enable]

Additional Heating Control object can be enabled if an extra Heating Control Value is needed on top of main Heat Control Value.

Object "General Temperature (RTC) – Heating Additional Stage Value" is created when parameter is enabled.

Disable from Bus: Object "General Temperature (RTC) – Heating Additional Stage (0-Disable)" can be used to disable additional heating control any time by writing True/False.

1.5.4 Eclipse Roon	Controller > Function Page > Page 1-RTC	> nearing	
+ General	Control Type	PI Continuous	•
Function Page	Heating Type	User Defined	-
	Proportional Range (x0.1K)	50	*
Settings	Integration Time (min)	240	* *
 Page 1-RTC 	Send Value On Change (%)	4	(0=inactive
Settings	Sending Interval (min)	15	(0=inactive
Setpoints	Additional Stage	🔵 Disable 🥥 Enable	
Heating	Disable From Bus	🔵 No 🔘 Yes	
Fan	Offset From Setpoint (x0.1K)	15	4 *
	Hysteresis ± (x0.1K)	5	۸ ۲
	Sending Interval (min)	15	🔹 (0=inactive

Offset from Setpoint (x 0.1 °C): [1...15...255]

Defines a separate setpoint value based on main Setpoint temperature for Object "General Temperature (RTC) – Heating Additional Stage Value". In this way, Additional Heating Source will be activated/deactivated depending on new temperature setpoint.

Example: Assume that a room has two type of different heating sources. (Main heating source, additional heating source)

Setpoint temperature is 24 degree for the "Heating Control Value" (main heating source.)

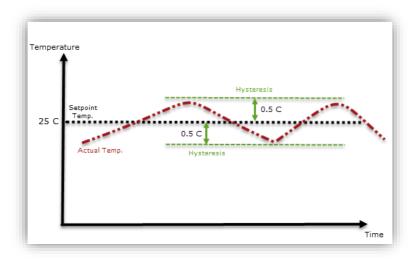
If "Offset from Setpoint" parameter is; -20 x 0.1 C° =-2 °C.

In this scenario, the setpoint for heating is set to 24 °C. When the temperature falls below 22 °C, additional heating should be switched on so that the room heats up again rapidly.

Hysteresis +/- (x 0.1 °C): [1...5...255]

Determines Hysteresis value to control Heating Additional Stage Value more accurate. "Hysteresis" prevents the output value from oscillation and give larger margin to turning heat or cool ON and OFF. If system is more an active system, hysteresis values should be given larger and more inactive values.

Sending Interval (min): [0...15...255]


Determines cyclic sending period of Object "General Temperature (RTC) – Heating Additional Stage Value".

3.2.4.1.7. Cooling - Control Type: [2-Point Control ON/OFF]

Control Type: [2-Point Control (On/Off), Switching PI Control (PWM), Continuous PI Control]

1.5.4 Eclipse Room O	Controller > Function Page > Page	e 1-RTC > Cooling	
+ General	Control Type	2 Point On/Off	Ŧ
- Function Page	Sending Interval (min) Hysteresis ± (x0.1K)	2 Point On/Off PWM-Switching PI Control PI Continuous	~
Settings - Page 1-RTC Settings	Additional Stage	Disable Enable	
Setpoints Cooling Fan			

Operates as a simple switch around the setpoint temperature using hysteresis values. "Hysteresis" prevents the output value from oscillation and give larger margin to turning heat or cool on and off. If system is more an active system, hysteresis values should be given larger and more inactive values.

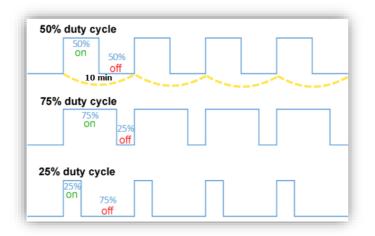
Sending Interval (min): [0...15...255] 0=inactive

Determines cyclic sending period of Object "General Thermostat - Cooling 2 Point Control Value".

Hysteresis +/- (x 0.1 °C): [1...5...255]

Determines Hysteresis value to control "Heating 2 Point Control Value" output more accurate. "Hysteresis" prevents the output value from oscillation and give larger margin to turning heat or cool ON and OFF. If system is more an active system, hysteresis values should be given larger and more inactive values.

General	Control Type	2 Point On/Off	•
Function Page	Sending Interval (min)	15	🔹 (0=inactive
Settings Page 1-RTC Settings	Hysteresis ± (x0.1K) Additional Stage	5 Oisable O Enable	* *
Setpoints			
Cooling			
Fan			


Additional Stage: Explained in <u>#3.2.4.1.10. Cooling – Additional Stage</u>

3.2.4.1.8. Cooling - Control Type: [Switching PI Control PWM]

PI algorithm is used to calculate control signal. After calculation, control signal is converted into a pulseinterval signal. This means PWM cycle is divided into "1 bit ON/OFF" output commands based on control value. PWM period and type of cooling should be selected according to the used room and type of cooling source.

PWM Period Time (min): [1...10...255]

Defines PWM period time. If control value is calculated %50. Then control value will be ON for 5 minutes and OFF for second 5 minutes. Please check following graphic.

Type of Cooling: Multiple cooling types with preset parameters are available to the user.

Cooling Ceiling (5K/240) Fan coil (4K/90) User Defined

If required cooling type is not available, individual parameters can be specified in the "User Defined" configuration.

Proportional Range (x0.1 °C): [10...50...100]

Defines the proportional range of control. Parameter changes the control speed of the controller.

Integration Time (min): [1...240...255]

Defines the reset time of controller. Integration Time has the effect of moving the room temperature slowly toward, and ultimately reaching the setpoint value. Depending on the type of system used, parameter needs to have different values. In general, the more inactive the overall system, the greater time is needed.

1.5	.4 Eclipse Room Co	ontroller > Function Page > Page 1-RTC	> Cooling	
+	General	Control Type	PWM-Switching PI Control	•
_	Function Page	PWM Period Time (min)		* *
		Cooling Type	User Defined	•
_	Settings Page 1-RTC	Proportional Range (x0.1K)	50	* *
	Settings	Integration Time (min) Additional Stage		Ŧ
	<mark>Setpoints</mark>	-		
	Cooling			
	Fan			

Additional Stage: Explained in <u>#3.2.4.1.10. Cooling – Additional Stage</u>

3.2.4.1.9. Cooling - Control Type: [Continuous PI Control PWM]

PI algorithm is used to calculate control signal and adjusts its output value between 0% and 100% to match the difference between the actual temperature and the setpoint temperature and enables an accurate regulation of the room temperature to the setpoint value. PI values should be selected compatible with the room and the type of heating system that needs to be controlled. Default PI values are defined for most common cooling types. User defined values can be used for different rooms and different cooling types for better performance. Using default values as a reference point and adjusting these values according to system might increase controller performance. **Cooling Type:** Multiple cooling types with preset parameters are available to the user.

Cooling Ceiling (5K/240) Fan coil (4K/90) User Defined

If the required cooling type is not available, individual parameters can be specified in the "User Defined" configuration.

Send Value On Change (%): [0...4...100] 0=inactive

Cooling control value will be sent on change of percentage via Object "General Temperature (RTC)– Cooling PI Control Value".

Sending Interval (min): [0...15...255]

Determines cyclic sending period of Object "General Temperature (RTC) - Cooling PI Control Value".

Additional Stage: Explained in <u>#3.2.4.1.10. Cooling – Additional Stage</u>

1.5.	4 Eclipse Room Co	ontroller > Function Page > Page 1-RTC	: > Cooling	
+	General	Control Type	PI Continuous	•
-	Function Page	Cooling Type	User Defined	•
~	Cattions	Proportional Range (x0.1K)	50	÷
	Settings	Integration Time (min)	240	* *
-	Page 1-RTC	Send Value On Change (%)	4	(0=inactive)
	Settings	Sending Interval (min)	15	(0=inactive)
	Setpoints	-		
	Cooling	Additional Stage	O Disable Enable	
	Fan			

3.2.4.1.10. Cooling – Additional Stage

Additional Stage: [Disable...Enable]

Additional Cooling Control object can be enabled if an extra Cooling Control Value is needed on top of main Cooling Control Value.

Object "General Temperature (RTC) – Cooling Additional Stage Value" is created when parameter is enabled.

Disable from Bus: Object "General Temperature (RTC) – Cooling Additional Stage (0-Disable)" can be used to disable additional heating control any time by writing True/False.

1.5.4 Eclipse Room Controller >	Function Page > Page 1-RTC > Heatin	ng
+ General	Control Type	PI Continuous 👻
 Function Page 	Heating Type	User Defined 👻
Cattions	Proportional Range (x0.1K)	50 ‡
Settings	Integration Time (min)	240 ‡
- Page 1-RTC	Send Value On Change (%)	4 (0=inactive
Settings	Sending Interval (min)	15 + (0=inactive
Setpoints	Additional Stage	🔵 Disable 🔘 Enable
Heating	Disable From Bus	🔵 No 🔘 Yes
ran	Offset From Setpoint (x0.1K)	15 *
	Hysteresis ± (x0.1K)	5 *
	Sending Interval (min)	15 🗘 (0=inactive

Offset from Setpoint (x 0.1 °C): [1...15...255]

Defines a separate setpoint value based on main Setpoint temperature for Object "General Temperature (RTC) – Cooling Additional Stage Value". In this way, Additional Cooling Source will be activated/deactivated depending on new temperature setpoint.

Example: Assume that a room has two type of different heating sources. (Main cooling source, additional cooling source)

Setpoint temperature is 24 degree for the "Cooling Control Value" (main cooling source.)

If "Offset from Setpoint" parameter is; -20 x 0.1 C $^{\circ}$ =-2 $^{\circ}$ C.

In this scenario, the setpoint for cooling is set to 24 °C. When the temperature rises above 26 °C, additional cooling should be switched on so that the room cools off again rapidly.

Hysteresis +/- (x 0.1 °C): [1...5...255]

Determines Hysteresis value to control Cooling Additional Stage Value more accurate. "Hysteresis" prevents the output value from oscillation and give larger margin to turning heat or cool ON and OFF. If system is more an active system, hysteresis values should be given larger and more inactive values.

Sending Interval (min): [0...15...255]

Determines cyclic sending period of Object "General Temperature (RTC) – Cooling Additional Stage Value".

3.2.4.1.11. Heating & Cooling

Control mode of thermostat can be selected for Heating, Cooling, and Heating & Cooling.

If Heating & Cooling control mode is selected parameter tabs of "Heating" and "Cooling" will place with same parameters. However parameter tabs of "Thermostat Settings" and "Setpoint Temperature" will have some additional parameters.

Please check below.

-Thermostat Settings

Heating & Cooling Control Value Output: Output value for Heating and Cooling can be sent via same object or 2 separate objects.

If "via 1 Object" option is selected Object "General Thermostat (RTC) – Heating/Cooling Control Value" will be activated.

If "via 2 Objects" option is selected Object "General Thermostat (RTC) – Heating Control Value" and Object "General Thermostat (RTC) – Cooling Control Value" will be activated.

20	Page 1-General Thermostat (RTC)	Heating PI Control Value	1 byte	percentage (0100%)
21	Page 1-General Thermostat (RTC)	Cooling PI Control Value	1 byte	percentage (0100%)

1.5	1.5.4 Eclipse Room Controller > Function Page > Page 1-RTC > Settings						
+	General	Control Modes	Heating And Cooling				
-	Function Page	Heating and Cooling Control Value Output	🔵 via 1 Object 🔘 via 2 Objects				
~	Settings	Behaviour of Control Mode at Bus Recovery	As before voltage failure 🔹				
-	Page 1-RTC	Switchover Control Mode	Only via Object 🔹				
	Settings	Temperature Sensor	Internal External				
	Setpoints	Window Contact	🔵 Disable 🔘 Enable				
	Heating	Window Contact Value	Inverted O Not Inverted				
	Cooling	Thermostat On/Off Function	🔵 Disable 🔘 Enable				
	Fan						

Behavior of Control Mode at Bus Recovery:

The parameter defines the behavior of the control mode after bus power return. Control mode can be changed to following options after a power return:

As before voltage failure Heating Cooling

Switchover Control Mode: [Only via Object, Local and via Object, Automatic]

Parameter makes possible to switch between the heating and cooling mode of the general thermostat.

Only via Object:

Switchover can be applied only "via Object" manually using Object "General Thermostat (RTC)– Heat/Cool Switchover".

\$01= Heating [1.100 DPT_cooling/heating]

\$00= Cooling [1.100 DPT_cooling/heating]

18	Page 1-General Thermostat (RTC)	Heat/Cool Switchover	1 bit	cooling/heating
----	---------------------------------	----------------------	-------	-----------------

Local and via Object:

Switchover can be applied locally on Control Element Page and also "via Object" manually using Object "General Thermostat (RTC) – Heat/Cool Switchover".

<u>Automatic:</u> The thermostat switches automatically between heating and cooling and to the associated setpoint according to defined "Deadband". Object "Thermostat – Heat/Cool Status" will transmit the status after switchover.

"Automatic switchover" function performs only if current operation mode is "Comfort Mode". Otherwise thermostat is not going to switchover heating and cooling!

Heating & Cooling Control Value Output	🔵 via 1 Object 🔘 via 2 Objects
Behaviour of Control Mode at Bus Recovery	As before voltage failure 🔻
Switchover Control Mode	O Automatically Via Object
Heating / Cooling Deadband (x0.1°C)	20 ‡
Operating Mode at Bus Recovery	As before voltage failure 🔻
Operating Mode Object	 1 bit Objects 1 Byte Object [DPT_HVACMode]

Heating Cooling Deadband (x 0.1 °C): [0...20...255]

Deadband defines the range between setpoint temperature and measured temperature. If deadband is exceeded, switchover will be applied.

-Heating/Cooling Object Description

Heating / Cooling Indication

Object "General Thermostat (RTC) – Heating Indication" defines a state for recent heating command. It indicates that heating source is recently having an active command to heat. In same way, Object "General Thermostat (RTC) – Cooling Indication" defines a state for recent cooling command. It indicates that cooling source is recently having an active command to cool.

H	160	Thermostat	Heating Indication	1 bit	state
H	161	Thermostat	Cooling Indication	1 bit	state

Example: Heating mode is active. Setpoint Temperature 22 °C, Actual Temperature 21 °C.

Heating control value is sending ON command to heating source and "heating indication" is instantly informing about heating command.

10:59:52.375	1.5.8	0/7/3	GroupValue_Write	Setpoint Indication	0C 4C 22 °C
10:59:52.398	1.5.8	0/7/6	GroupValue_Write	Actual Temperature	0C 6A 22.6 ℃
11:00:26.114	1.5.8	0/7/4	GroupValue_Write	Heating Control Value	\$00 Off
11:00:52.635	1.5.8	0/7/3	GroupValue_Write	Setpoint Indication	0C 4C 22 °C
11:00:52.658	1.5.8	0/7/6	GroupValue_Write	Actual Temperature	0C 6A 22.6 ℃
11:01:05.541	15.15.241	0/7/18	GroupValue_Write	External Value	0C 1A 21 °C
11:01:07.700	1.5.8	0/7/6	GroupValue_Write	Actual Temperature	0C 1A 21 °C
11:01:08.299	1.5.8	0/7/4	GroupValue_Write	Heating Control Value	\$01 On
11:01:08.320	1.5.8	0/7/23	GroupValue_Write	Heating Indication	\$01 Active

3.2.4.1.12. Fan

General	Fan Control	🔵 Disable 🔘 Enable	
Function Page	Fan Display	Heating	•
Settings	Control Unit has Fan Off	🔵 No 🔘 Yes	
 Page 1-RTC 	Fan Off Control Object	Inverted ON Not Inverted	
Settings	Control Unit has Fan Auto	🔵 No 🔘 Yes	
Setpoints	Fan Auto/Manual Object	🔵 Disable 🔘 Enable	
Heating	Fan Auto/Manual Control Value	Inverted O Not Inverted	
Cooling	Number of Fan Stages	4	•
Fan	Fan Stage Object Type	🔵 1 Bit 🔘 1 Byte	
		Enumerated Scaling	

Fan Display: [Heating, Cooling, Heating and Cooling]

Fan can be visible only for selected control modes.

Control Unit has Fan Off:

Parameter can be activated if actuator has a "Fan OFF" object. "Fan OFF" command can be sent to the actuator via Object "General Thermostat (RTC) –Fan Off (1-Off)" will be visible.

50	Page 1-General Thermostat (RTC)	Fan Off (1-Off)	1 bit	state
51	Page 1-General Thermostat (RTC)	Status Fan Off (1-Off)	1 bit	state

Fan off Control Object:

Fan off command can be used inverse. [True or False]

Control Unit has Fan Auto:

Parameter can be activated if actuator has a "Fan auto" function.

Fan Auto/Manual Object:

"Fan auto" command can be sent to the actuator via Object "General Thermostat (RTC) –Fan Auto/Manual (1-Auto)" will be visible.

H -	48 Page 1-General Thermostat (RTC) Fan Auto/Manual (1-Auto) 1 bit	state

Fan Auto/Manual Control Value:

Fan auto command can be used inverse. [True or False]

Number of Fan Stages: [1...3...5]

Number of Fan levels can be changed according to control unit. Object will be available according to selection.

1 36	Page 1-General Thermostat (RTC)	Fan Speed Enumerated (0,1,2,3,4)	1 byte	fan stage (0255)
37	Page 1-General Thermostat (RTC)	Status Fan Speed Enumerated (0,1,2,3,4)	1 byte	fan stage (0255)

Fan Stage Object Type: [1 bit, 1 Byte]

Type of Fan stage object can be changed as 1 bit or 1 Byte. 1 Byte object can be used as "Enumerated" or "Scaling".

Fan Speed Enumerated (0, 1, 2, 3, 4)

Fan Speed Scaling (0, 25, 50, 75, 100) %

1 bit objects;

38	Page 1-General Thermostat (RTC)	Fan 1	1 bit	state
1 39	Page 1-General Thermostat (RTC)	Status Fan 1	1 bit	state
40	Page 1-General Thermostat (RTC)	Fan 2	1 bit	state
41	Page 1-General Thermostat (RTC)	Status Fan 2	1 bit	state
42	Page 1-General Thermostat (RTC)	Fan 3	1 bit	state
43	Page 1-General Thermostat (RTC)	Status Fan 3	1 bit	state
1 44	Page 1-General Thermostat (RTC)	Fan 4	1 bit	state
45	Page 1-General Thermostat (RTC)	Status Fan 4	1 bit	state

3.2.4.2. Slave Thermostat

"Slave Thermostat" function does not actively control the Hvac actuator. Instead, it is used to display and send commands to another "Thermostat" which is actively controlling the Hvac actuator. Basically, "Slave thermostat" function is a copy of main "Thermostat".

Temperature Sensor:

Temperature value can be received from an external temperature sensor directly or internal sensor can be used as default.

Operating Mode 1 Bit Objects:

Parameter determines the data type of operating mode objects. Data type of operating mode objects can be used as "1 bit" with separate objects for each operating mode if this parameter is enabled. Status Objects will send current status of operating mode after change.

28	Page 1-General Thermostat (RTC)	Comfort Mode	1 bit	state	С	-	W	-	
29	Page 1-General Thermostat (RTC)	Status Comfort Mode	1 bit	state	С	R	-	Т	-
30	Page 1-General Thermostat (RTC)	Standby Mode	1 bit	state	С	-	W	-	-
31	Page 1-General Thermostat (RTC)	Status Standby Mode	1 bit	state	С	R	-	Т	-
32	Page 1-General Thermostat (RTC)	Economy/Night Mode	1 bit	state	С	-	W	-	-
33	Page 1-General Thermostat (RTC)	Status Economy/Night Mode	1 bit	state	С	R	-	Т	-
34	Page 1-General Thermostat (RTC)	Building Protection Mode	1 bit	state	С	-	W	-	-
35	Page 1-General Thermostat (RTC)	Status Building Protection Mode	1 bit	state	С	R	-	Т	-

Fan Control: [Disable, Enable]

Check Fan section for description of fan parameters. 3.2.4.1.12. Fan

Heat/Cool Switchover:

Parameter makes possible to switch between the heating and cooling mode of the main thermostat.

Thermostat ON/OFF Function:

Thermostat ON/OFF Function is used to turn the thermostat on/off. Switch object and status object will be created after this parameter is enabled.

3.2.4.3. Air Conditioner Control

Figure 11 - Air Conditioner Control

"Function" contains special communication objects to control an air conditioner via a KNX gateway.

Control Mode Object Type: [1 bit, 1 Byte]

Control mode can be selected using Object "Control Modes (0-Auto, 1-Heat, 3-Cool, 9-Fan, 14-Dry)" Heating, Cooling, and Heating & Cooling.

Heat/Cool Mode 1 Bit Object: [Disable, Enable]

Parameter enables the switchover object to change between heating and cooling mode.

Control Unit has Fan Auto:

Check Fan section for Fan parameters. 3.2.4.1.12. Fan

Settings	Page Function	Detailed Control Element 🔹
5	Page Function	Air Conditioner Control 🔹
Page 1-Air Conditioner	Control Modes Object Type	🗌 1 Bit 🔘 1 Byte
	Heat/Cool Mode 1 Bit Object	Disable Enable
	Control Unit has Fan Auto	🔵 No 🔘 Yes
	Fan Auto/Manual Object	🔵 Disable 🔘 Enable
	Fan Auto/Manual Control Value	Inverted O Not Inverted
	Number of Fan Stages	4 🗸
	Fan Stage Object Type	🗌 1 Bit 🔘 1 Byte
		Enumerated O Scaling
	Vanes Up-Down Control	🔵 Disable 🔘 Enable
	Number Of Positions	Only Swing 👻
	Vanes Left-Right Control	🔵 Disable 🔘 Enable
	Number Of Positions	Only Swing 👻
	Temperature Sensor	Internal External

Vanes Up-Down Control:

Up-Down vane control can be activated using Object Vanes Up-Down (1-Swing, 0-Off)

52	Page 1-Air Conditioner	Vanes Up-Down Swing (1-Swing, 0-Off)	1 bit	boolean
53	Page 1-Air Conditioner	Status Vanes Up-Down Swing (1-Swing, 0-Off)	1 bit	boolean

Number of positions: [Only swing, 1...8]

Number of positions can be defined using parameter. Object type will change as 1 byte.

50	Page 1-Air Conditioner	Vanes Up-Down	1 byte	counter pulses (0255)
51	Page 1-Air Conditioner	Status Vanes Up-Down	1 byte	counter pulses (0255)

Vanes Left-Right Control:

Left-Right vane control can be activated using Object Vanes Left-Right (1-Swing, 0-Off)

56	Page 1-Air Conditioner	Vanes Left-Right Swing (1-Swing, 0-Off)	1 bit b	oolean
57	Page 1-Air Conditioner	Status Vanes Left-Right Swing (1-Swing, 0-Off)	1 bit b	oolean

Number of positions: [Only swing, 1...8]

Number of positions can be defined using parameter. Object type will change as 1 byte.

54	Page 1-Air Conditioner	Vanes Left-Right	1 byte	counter pulses (0255)
55	Page 1-Air Conditioner	Status Vanes Left-Right	1 byte	counter pulses (0255)

Temperature Sensor:

Temperature value can be received from an external temperature sensor directly or internal sensor can be used as default.

3.2.4.4 Audio Control

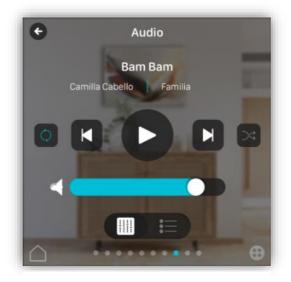
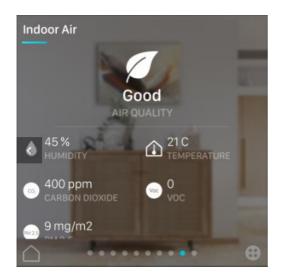


Figure 12 - Audio Control


Audio Control page allows to manage any KNX audio controller via following KNX objects.

13	Page 1-Audio	Play/Pause	1 bit start/stop
14	Page 1-Audio	Status Play/Pause	1 bit start/stop
15	Page 1-Audio	Volume	1 byte percentage (0100%)
16	Page 1-Audio	Status Volume	1 byte percentage (0100%)
17	Page 1-Audio	Mute/Unmute	1 bit enable
18	Page 1-Audio	Status Mute/Unmute	1 bit enable
19	Page 1-Audio	Next/Previous	1 bit step
20	Page 1-Audio	Playlist Selection	1 byte counter pulses (0255)
21	Page 1-Audio	Current Playlist	1 byte counter pulses (0255)
22	Page 1-Audio	Shuffle/No Shuffle	1 bit enable
23	Page 1-Audio	Status Shuffle/No Shuffle	1 bit enable
24	Page 1-Audio	Repeat/No Repeat	1 bit enable
25	Page 1-Audio	Status Repeat/No Repeat	1 bit enable
26	Page 1-Audio	Song Name	14 bytes Character String (ISO 8859
27	Page 1-Audio	Artist Name	14 bytes Character String (ISO 8859
28	Page 1-Audio	Album Name	14 bytes Character String (ISO 8859
29	Page 1-Audio	Playlist Name	14 bytes Character String (ISO 8859

3.2.5. Page 1 – Status Display

"Status Display" can be used to show customized status information using selectable icons and data point types.



Figure 13 - Air Quality Display

Figure 14 - Energy Monitor

Number of status element: [1...8]

A maximum of 8 status elements can be added to same page.

<u>lcon:</u>

Selected icon will be visible near status element. Figure 13, 14

<u>Text</u>: (16 characters allowed)

Description will be visible below the value and unit. Figure 13, 14

Data point type of status item 1: Following data types can be used;

DPT 7 (2 Byte Unsigned) DPT 9 (2 Byte Float) DPT 13 (4 Byte Signed) DPT 14 (4 Byte Float)

Unit: (16 characters allowed)

"Unit" will be visible near the value.

ŀ	General	Description of the page		
_	Function Page	Page Icon	👃 - Thermostat 1	•
	C-W	Page Function	Status Display	•
	Settings	Number of status element	1	•
	Page 1-Status Display	Status Item 1		
		lcon	🕈 - Light 1	•
		Text		
		Data point type of status item 1	DPT 7 (2 Byte Unsigned)	•
		Unit		

4. Commissioning

For commissioning the device, the following activities are required:

- Make electrical connections
- Turn on the bus power supply
- Switch the device operation to programming mode
 - Alternatively, instead of using programming button, it is possible to switch operation of the device to programming mode on settings menu by activating knx programming
- Download into device the physical address and the configuration with ETS program
- At the end of the download operation of the device returns to normal mode
- Now the device is programmed and ready to use

Configuration and commissioning of the device require the use of ETS4 or later releases. These activities must be carried out according to the design of the building automation system done by a qualified planner.